PCB application and use(3)

PCB application and use(3)

Aerospace Applications

Like automotive applications, aerospace applications of PCBs require a great deal of precision and durability. Jets and rockets often go through huge amounts of turbulence in their atmospheric journeys, meaning that a normal rigid PCB may endure enough stress to become damaged in the process. To get around this, most aerospace manufacturers use flexible PCBs, which are light and small in addition to being resistant to vibration damage.

In addition to being durable, aerospace PCBs have to be extremely high-functioning and precise, manufactured for optimal function to avoid technical issues. Since electronics used in aerospace technology are so crucial to the safety of the vehicle and its crew, it is vital that they function perfectly.

Just a few of the more common aerospace applications of PCBs include the following:

• Monitoring Equipment: Instrumentation, including accelerometers, pressure sensors, microphones and torque and force sensors all use PCBs as part of their basic function. These products are used within the engines and cockpits of airplanes and rockets, both to monitor the function of the vehicle and to communicate with ground control.

• Testing Equipment: In addition to the function of an aircraft, PCBs are involved in the development and testing of air vehicles. Testing equipment that collects data during structural, vibration and flight testing procedures uses PCBs at its core. This data can then be used to develop more effective, efficient and safer aircraft.

Lighting Applications

Printed circuit boards provide a versatile base for a variety of high-output LED applications. LED lighting solutions are quickly gaining steam within a variety of industries, valued for their low power consumption, high efficiency and impressive light output. When integrated with a PCB, these LEDs gain even more versatility. PCBs facilitate expanded uses for LED lighting solutions, specifically including displays and indicators.

A few of the most common applications of PCB LEDs within the lighting industry include the following:

• The Telecommunications Industry: Telecommunications equipment often uses PCBs to control their LED indicators and displays. Within this industry, lightweight and durable PCBs tend to be favorable, primarily because of the density of machinery within the industry. Because Aluminum PCBs tend to feature improved heat transfer properties over FR4 variants, it is commonly found within telecommunications lighting applications.

• The Automotive Industry: PCB LED displays are commonly found in the automotive industry, specifically on dashboard indicators, in headlights, brake lights and advanced panel displays. This industry particularly favors PCB LEDs for their low manufacturing cost and impressive durability, which improve the value and longevity of the vehicle.

• The Computer Technology Industry: PCB-based LEDs are becoming increasingly common within the computer technology industry, commonly found in desktop and laptop displays and indicators. Because of the heat-sensitive nature of computer technology, aluminum-based PCBs are particularly favored for LED lighting applications within computers.

• The Medical Industry: Lighting tools are of immense importance in medical applications, specifically in surgical and emergency applications, where great lighting can help improve a physician's visibility. Within these applications, LED tends to be the lighting method of choice for its power and small size. PCBs are often used as the base for these applications, specifically aluminum PCBs, which last longer and offer better heat-transfer capabilities than other PCB types. This way, PCB LEDs guarantee long-lasting medical equipment that can repeatedly be used in a variety of medical settings.

• Residential and Storefront Applications: In addition to the uses listed above, PCB LEDs are finding increased popularity within homes and businesses in the form of signage and displays. Smart LED lighting is a cheap way for homeowners to light their homes efficiently, while customizable LED displays can direct business to storefronts.

While useful in a variety of applications, LEDs tend to be temperature-sensitive, with the longevity of a LED bulb decreasing as the average temperature of the light fixture increases. While many conventional PCBs offer excellent functionality, not all are suited for LED applications. When paired with a LED, some PCBs may not transfer heat quickly enough to provide a stable temperature environment for the LED to work at maximum efficiency. To function best within a lighting application, PCBs designed for LEDs have to be designed to maximize heat transfer ability.

To this end, aluminum-backed PCBs are the perfect solution. The majority of high-lumen-output LED applications use aluminum-backed PCBs, primarily for the higher levels of thermal heat transfer aluminum PCBs can achieve. This way, the PCB doesn't need an additional heat sink in the design, though others could be added to improve the heat transfer ability of the PCB even further. Incorporating the heat sink into the PCB base itself, however, allows for more compact designs at lower costs to the manufacturer and the end user.